Cart (Loading....) | Create Account
Close category search window
 

High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Black, Charles T. ; IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA ; Guarini, K.W. ; Ying Zhang ; Kim, Hyungjun
more authors

We combine nanometer-scale polymer self assembly with advanced semiconductor microfabrication to produce metal-oxide-semiconductor (MOS) capacitors with accumulation capacitance more than 400% higher than planar devices of the same lateral area. The self assembly technique achieves this degree of enhancement using only standard processing techniques, thereby obviating additional process complexity. These devices are suitable for use as on-chip power supply decoupling capacitors, particularly in high-performance silicon-on-insulator technology.

Published in:

Electron Device Letters, IEEE  (Volume:25 ,  Issue: 9 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.