By Topic

General reconstruction theory for multislice X-ray computed tomography with a gantry tilt

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Noo, F. ; Dept. of Radiol., Utah Univ., Salt Lake City, UT, USA ; Defrise, M. ; Kudo, H.

This paper discusses image reconstruction with a tilted gantry in multislice computed tomography (CT) with helical (spiral) data acquisition. The reconstruction problem with gantry tilt is shown to be transformable into the problem of reconstructing a virtual object from multislice CT data with no gantry tilt, for which various algorithms exist in the literature. The virtual object is related to the real object by a simple affine transformation that transforms the tilted helical trajectory of the X-ray source into a nontilted helix, and the real object can be computed from the virtual object using one-dimensional interpolation. However, the interpolation may be skipped since the reconstruction of the virtual object on a Cartesian grid provides directly nondistorted images of the real object on slices parallel to the tilted plane of the gantry. The theory is first presented without any specification of the detector geometry, then applied to the curved detector geometry of third-generation CT scanners with the use of Katsevich's formula for example. Results from computer-simulated data of the FORBILD thorax phantom are given in support of the theory.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 9 )