Cart (Loading....) | Create Account
Close category search window
 

Interactive volume segmentation with differential image foresting transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Falcao, A.X. ; Inst. of Comput., Univ. of Campinas, Brazil ; Bergo, F.P.G.

The absence of object information very often asks for considerable human assistance in medical image segmentation. Many interactive two-dimensional and three-dimensional (3-D) segmentation methods have been proposed, but their response time to user's actions should be considerably reduced to make them viable from the practical point of view. We circumvent this problem in the framework of the image foresting transform (IFT)-a general tool for the design of image operators based on connectivity-by introducing a new algorithm (DIFT) to compute sequences of IFTs in a differential way. We instantiate the DIFT algorithm for watershed-based and fuzzy-connected segmentations under two paradigms (single-object and multiple-object) and evaluate the efficiency gains of both approaches with respect to their linear-time implementation based on the nondifferential IFT. We show that the DIFT algorithm provides efficiency gains from 10 to 17, reducing the user's waiting time for segmentation with 3-D visualization on a common PC from 19-36 s to 2-3 s. We also show that the multiple-object approach is more efficient than the single-object paradigm for both segmentation methods.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 9 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.