By Topic

Accurate estimation of the fisher information matrix for the PET image reconstruction problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Quanzheng Li ; Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA, USA ; Asma, E. ; Jinyi Qi ; Bading, J.R.
more authors

The Fisher information matrix (FIM) plays a key role in the analysis and applications of statistical image reconstruction methods based on Poisson data models. The elements of the FIM are a function of the reciprocal of the mean values of sinogram elements. Conventional plug-in FIM estimation methods do not work well at low counts, where the FIM estimate is highly sensitive to the reciprocal mean estimates at individual detector pairs. A generalized error look-up table (GELT) method is developed to estimate the reciprocal of the mean of the sinogram data. This approach is also extended to randoms precorrected data. Based on these techniques, an accurate FIM estimate is obtained for both Poisson and randoms precorrected data. As an application, the new GELT method is used to improve resolution uniformity and achieve near-uniform image resolution in low count situations.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:23 ,  Issue: 9 )