By Topic

Variable precision arithmetic circuits for FPGA-based multimedia processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Perri, S. ; Dipt. de Elettronica, Univ. of Calabria, Rende, Italy ; Corsonello, P. ; Iachino, M.A. ; Lanuzza, M.
more authors

This brief describes new efficient variable precision arithmetic circuits for field programmable gate array (FPGA)-based processors. The proposed circuits can adapt themselves to different data word lengths, avoiding time and power consuming reconfiguration. This is made possible thanks to the introduction of on purpose designed auxiliary logic, which enables the new circuits to operate in single instruction multiple data (SIMD) fashion and allows high parallelism levels to be guaranteed when operations on lower precisions are executed. The new SIMD structures have been designed to optimally exploit the resources of a widely used family of SRAM-based FPGAs, but their architectures can be easily adapted to any either SRAM-based or antifuse-based FPGA chips.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:12 ,  Issue: 9 )