Cart (Loading....) | Create Account
Close category search window
 

Optimal tower fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baktir, S. ; Electr. & Comput. Eng. Dept., Worcester Polytech. Inst., MA, USA ; Sunar, B.

We introduce a new tower field representation, optimal tower fields (OTFs), that facilitates efficient finite field operations. The recursive direct inversion method we present has significantly lower complexity than the known best method for inversion in optimal extension fields (OEFs), i.e., Itoh-Tsujii's inversion technique. The complexity of our inversion algorithm is shown to be O(m2), significantly better than that of the Itoh-Tsujii algorithm, i.e., O(m2(log2m.)). This complexity is further improved to O(mlog23) by utilizing the Karatsuba-Ofman algorithm. In addition, we show that OTFs may be converted to OEF representation via a simple permutation of the coefficients and, hence, OTF operations may be utilized to achieve the OEF arithmetic operations whenever a corresponding OTF representation exists. While the original OTF multiplication and squaring operations require slightly more additions than their OEF counterparts, due to the free conversion, both OTF operations may be achieved with the complexity of OEF operations.

Published in:

Computers, IEEE Transactions on  (Volume:53 ,  Issue: 10 )

Date of Publication:

Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.