By Topic

Osteoblast cell membrane hybrid bilayers for studying cell-cell interactions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
J. T. Elliott ; Biotechnol. Div., Nat. Inst. of Stand. & Technol., Gaithersburg, MD, USA ; A. Tona ; J. T. Woodward ; C. W. Meuse
more authors

Osteoblast-like cells were grown on a surface that presents cell membrane components to the cells in culture. The culture surface was a bimolecular layer formed by the interaction of osteoblast plasma membrane vesicles with an alkanethiol monolayer. The potential of these osteoblast-membrane hybrid bilayers for promoting osteoblast adhesion, growth and differentiation was examined. UMR-106 osteoblast-like cells cultured on these surfaces are normal in appearance, and in the presence of serum, proliferate as well or better than on control surfaces. The level of alkaline phosphatase production in the presence and absence of serum suggests that the osteoblast-like cells retain their differentiated phenotype, and appear to respond to the cell surface ligands presented by the osteoblast-membrane biomimetic surface. These observations suggest that biomimetic membrane films prepared from osteoblast cell membranes support osteoblast cell growth, allow the cells to maintain their differentiation state and may be suitable as a model system to probe cell-cell interactions.

Published in:

IEE Proceedings - Nanobiotechnology  (Volume:151 ,  Issue: 3 )