By Topic

Memory sub-banking scheme for high throughput turbo decoder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tiwari, M. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Yuming Zhu ; Chakrabarti, C.

Turbo codes have revolutionized the world of coding theory with their superior performance. However, the implementation of these codes is both computationally and memory-intensive. Recently, the sliding window (SW) approach has been proposed as an effective means of reducing the decoding delay as well as the memory requirements of turbo implementations. In this paper, we present a sub-banked implementation of the SW-based approach that achieves high throughput, low decoding latency and reduced memory energy consumption. Our contributions include derivation of the optimal memory sub-banked structure for different SW configurations, study of the relationship between memory size, energy consumption and decoding latency for different SW configurations and study of the effect of number of sub-banks on the throughput and decoding latency of a given SW configuration. The theoretical study has been validated by SimpleScalar for a rate 1/3 MAP decoder.

Published in:

Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on  (Volume:5 )

Date of Conference:

17-21 May 2004