By Topic

Exploratory analysis and visualization of speech and music by locally linear embedding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jain, V. ; Dept. of Comput. & Inf. Sci., Univ. of Pennsylvania, Philadelphia, PA, USA ; Saul, L.K.

Many problems in voice recognition and audio processing involve feature extraction from raw waveforms. The goal of feature extraction is to reduce the dimensionality of the audio signal while preserving the informative signatures that, for example, distinguish different phonemes in speech or identify particular instruments in music. If the acoustic variability of a data set is described by a small number of continuous features, then we can imagine the data as lying on a low dimensional manifold in the high dimensional space of all possible waveforms. Locally linear embedding (LLE) is an unsupervised learning algorithm for feature extraction in this setting. In this paper, we present results from the exploratory analysis and visualization of speech and music by LLE.

Published in:

Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on  (Volume:3 )

Date of Conference:

17-21 May 2004