By Topic

Distributed change detection in large scale sensor networks through the synchronization of pulse-coupled oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yao-Win Hong ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; Scaglione, A.

This paper proposes the use of a distributed synchronization mechanism, which locks in phase the pulse-coupled oscillators, to rapidly alert the nodes in a sensor network of a change detected by a group of the sensors. By encoding into an abrupt variation of the phase their positive detection of a change, the nodes force all other nodes to reach a new synchronization equilibrium. Therefore, the information about the change is implicitly encoded in the phase transitions. While the local detection problem at each sensor can be addressed using the standard change detection algorithms, the interesting aspect of this work is the unconventional way through which the nodes broadcast their information to each other and fuse their decisions. The main advantages of the proposed method is the scalability and low complexity of the fusion algorithm.

Published in:

Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on  (Volume:3 )

Date of Conference:

17-21 May 2004