By Topic

A data mining approach to objective speech quality measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Zha ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, Ont., Canada ; Wai-Yip Chan,

Existing objective speech quality measurement algorithms still fall short of the measurement accuracy that can be obtained from subjective listening tests. We propose an approach that uses statistical data mining techniques to improve the accuracy of auditory-model based quality measurement algorithms. We present the design of a novel measurement algorithm using the multivariate adaptive regression splines (MARS) method. A large set of speech distortion features is first created. MARS is used to find a small set of features that provide the best estimate ("model") of speech quality. One appeal of the approach is that the model size can scale with the amount of speech data available for learning. In our simulations, the new algorithm furnishes significant performance improvement over PESQ (perceptual evaluation of speech quality).

Published in:

Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on  (Volume:1 )

Date of Conference:

17-21 May 2004