By Topic

Influence of interface traps and surface mobility degradation on scanning capacitance microscopy measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Y. D. Hong ; Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, Brisbane, Australia ; Yew Tong Yeow ; W. -K. Chim ; Kin-Mun Wong
more authors

Although scanning capacitance microscopy (SCM) is based on the MOS capacitance theory, the measurement frequency is 915-MHz instead of 100 kHz to 1 MHz in conventional MOS capacitance-voltage measurement. At this high frequency, the reactance of the probe tip-to-substrate capacitance can become smaller than the series resistance of the substrate inversion layer, particularly when the surface mobility is degraded. The response of the oxide-silicon interface traps to SCM measurement is also different due to the use of a 10-kHz signal to determine dC/dV. In this paper, we compare experimental and simulation data to demonstrate the effects of interface traps and surface mobility degradation on SCM measurement. Implications on the treatment of SCM data for accurate dopant profile extraction are also presented.

Published in:

IEEE Transactions on Electron Devices  (Volume:51 ,  Issue: 9 )