By Topic

Analytical percolation model for predicting anomalous charge loss in flash memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Degraeve, R. ; Interuniversity Microelectron. Center (IMEC), Leuven, Belgium ; Schuler, F. ; Kaczer, B. ; Lorenzini, M.
more authors

Data retention in flash memories is limited by anomalous charge loss. In this work, this phenomenon is modeled with a percolation concept. An analytical model is constructed that relates the charge-loss distribution of moving bits in flash memories with the geometric distribution of oxide traps. The oxide is characterized by a single parameter, the trap density. Combined with a trap-to-trap direct tunneling model, the physical parameters of the electron traps involved in the leakage mechanism are determined. Flash memory failure rate predictions for different oxide qualities, thicknesses and tunnel-oxide voltages are calculated.

Published in:

Electron Devices, IEEE Transactions on  (Volume:51 ,  Issue: 9 )