By Topic

Role of transdermal potential difference during iontophoretic drug delivery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bandrivskyy, A. ; Dept. of Phys., Lancaster Univ., UK ; Bernjak, A. ; McClintock, P.V.E. ; Stefanovska, A.

Potential differences have been measured during transdermal iontophoresis in order to establish the effect of voltage, as opposed to current, on cutaneous blood flow. It is known that, even in the absence of drugs, the iontophoresis current can sometimes produce increased blood flow. The role of voltage in this process is studied through single-ended measurements (between electrode and body) of the potential difference during iontophoresis with 100-μA, 20-s current pulses through deionized water, saturated 20.4% NaCl solution, 1 % acetylcholine, and 1 % sodium nitroprusside. It is found that the voltage needed to deliver the current varied by orders of magnitudes less than the differences in the conductance of these different electrolytes, and it is concluded that, at least for the present current protocol, the voltage as such is not an important factor in increasing the blood flow.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 9 )