By Topic

Classification of anatomical structures in mr brain images using fuzzy parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Algorri, M.-E. ; Dept. of Digital Syst., Instituto Tecnologico Autonomo de Mexico, Tizapan San Angel, Mexico ; Flores-Mangas, F.

We present an algorithm that automatically segments and classifies the brain structures in a set of magnetic resonance (MR) brain images using expert information contained in a small subset of the image set. The algorithm is intended to do the segmentation and classification tasks mimicking the way a human expert would reason. The algorithm uses a knowledge base taken from a small subset of semiautomatically classified images that is combined with a set of fuzzy indexes that capture the experience and expectation a human expert uses during recognition tasks. The fuzzy indexes are tissue specific and spatial specific, in order to consider the biological variations in the tissues and the acquisition inhomogeneities through the image set. The brain structures are segmented and classified one at a time. For each brain structure the algorithm needs one semiautomatically classified image and makes one pass through the image set. The algorithm uses low-level image processing techniques on a pixel basis for the segmentations, then validates or corrects the segmentations, and makes the final classification decision using higher level criteria measured by the set of fuzzy indexes. We use single-echo MR images because of their high volumetric resolution; but even though we are working with only one image per brain slice, we have multiple sources of information on each pixel: absolute and relative positions in the image, gray level value, statistics of the pixel and its three-dimensional neighborhood and relation to its counterpart pixels in adjacent images. We have validated our algorithm for ease of use and precision both with clinical experts and with measurable error indexes over a Brainweb simulated MR set.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:51 ,  Issue: 9 )