By Topic

Destruction of targeted cancer cells using magnetizable beads and pulsed magnetic forces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Ogiue-Ikeda ; Dept. of Biomed. Eng., Univ. of Tokyo, Japan ; Y. Sato ; S. Ueno

We investigated the destruction of targeted cancer cells using two types of magnetizable beads and pulsed magnetic forces. TCC-S leukemic cells were combined with magnetizable beads of diameter 4.5±0.2 μm and 2.8±0.2 μm by an antigen-antibody reaction. The cell/bead/antibody complexes were suspended in 1 ml of medium in a 1.5 ml tube, and a magnet was used to aggregate the beads. The aggregated cell/bead/antibody complexes were then stimulated ten times at 2 s intervals using a circular coil, which produced monophasic pulses of 150 μs duration and a maximum magnetic-field strength of 2.4 T at its center. The viability of the cells was then assessed using the trypan blue stain. The viabilities of the stimulated groups were significantly lower than those of the control groups, for both the 4.5 and 2.8 μm beads. In addition, the viabilities of the stimulated groups containing 4.5 μm beads were lower than those containing 2.8 μm beads. Furthermore, the viabilities of the stimulated groups with 4.5 μm beads decreased as the number of beads increased. We propose that the instantaneous pulsed magnetic forces caused the aggregated beads to forcefully penetrate or rupture the targeted cells. We therefore conclude that the use of large numbers of magnetizable beads with a large diameter can effectively destroy cells targeted by an antigen-antibody reaction.

Published in:

IEEE Transactions on Magnetics  (Volume:40 ,  Issue: 4 )