By Topic

Feedforward decoupling control design for dual-actuator system in hard disk drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinchuan Zheng ; Data Storage Inst., Singapore ; Guoxiao Guo ; Youyi Wang

The dual-actuator hard disk drive (HDD) with two actuators mounted in the diagonal corners of the baseplate allows faster data access with relatively slower spindle speed. However, the mechanical interaction between the actuators tends to affect the head positioning accuracy. In this paper, the dual-actuator structure is formulated as a dual-input dual-output (DIDO) system and then identified in frequency domain. Based on the interaction models, the feedforward decoupling control (FDC) is developed to compensate for the vibration due to interaction. Experimental results on a dual-actuator prototype demonstrate that the position error signal (PES) value due to interaction is reduced by 72% even under the severest condition.

Published in:

Magnetics, IEEE Transactions on  (Volume:40 ,  Issue: 4 )