Cart (Loading....) | Create Account
Close category search window

Nonlinear model identification of wind turbine with a neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kelouwani, S. ; Inst. de Recherche sur l''Hydrogene, Univ. du Quebec a Trois-Rivieres, Canada ; Agbossou, K.

A nonlinear model of wind turbine based on a neural network (NN) is described for the estimation of wind turbine output power. The proposed nonlinear model uses the wind speed average, the standard deviation and the past output power as input data. An anemometer with a sampling rate of one second provides the wind speed data. The NN identification process uses a 10-min average speed with its standard deviation. The typical local data collected in September 2000 is used for the training, while those of October 2000 are used to validate the model. The optimal NN configuration is found to be 8-5-1 (8 inputs, 5 neurons on the hidden layer, one neuron on the output layer). The estimated mean square errors for the wind turbine output power are less than 1%. A comparison between the NN model and the stochastic model mostly used in the wind power prediction is done. This work is a basic tool to estimate wind turbine energy production from the average wind speed.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:19 ,  Issue: 3 )

Date of Publication:

Sept. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.