By Topic

Maximization of flux-linkage in HTS motors using shape design sensitivity analysis with critical current constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Lee, Joon-Ho ; Sch. of Inf. & Commun. Eng., Sungkyunkwan Univ., Suwon, South Korea ; Hong-Soon Choi ; Wansoo Nah ; Il-Han Park
more authors

This paper proposes a design method for optimizing the rotor winding shape of HTS motor. The design objective is to maximize the flux-linkage of stator winding with a given amount of superconductor volume. The increase of flux-linkage results in output-power increase, compact size and quench-reliable characteristic. The optimization algorithm is a design sensitivity analysis where the HTS critical current condition is taken into account. First, the shape of rotor winding is optimized to give a boundary shape of smooth curves. Second, with the shape the rectangular sizes of windings are approximately obtained for easy manufacture. Finally, the rectangular sizes are also optimized for fine-size tuning. The proposed design method is applied to the 100-hp HTS motor.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:14 ,  Issue: 2 )