By Topic

Power supply for pulsed magnets with magnetic energy recovery current switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Takaku, T. ; Lab. for Nucl. reactors, Tokyo Inst. of Technol., Japan ; Isobe, T. ; Narushima, J. ; Shimada, R.

In this paper, we propose a power supply with magnetic energy recovery current switch for pulsed magnets, such as the synchrotron accelerator bending magnets, magnetizer. The switch which consists of four MOSFET elements and one capacitor, generates a fast pulsed current with low voltage, and it improves the power factor. The switch absorbs the magnetic energy stored in the inductance of the load into the capacitor. And in next time on, it regenerates the energy to the load. In addition, this switch operates in zero-voltage switching and zero-current switching, and the switching loss is very small. In order to turn on the load current at high speed in the circuit with an inductance, high voltage of several times higher than the voltage which maintains steady current. Therefore, by adopting this switch in the power source for pulsed power supply, high-speed pulsed current is efficiently generated by recovering the magnetic energy which has been stored in the inductance to the load in the next time on. As an application of DC circuit, a semiconductor Marx-generator which generates the high voltage pulse composed of a multistage magnetic energy recovery is described.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:14 ,  Issue: 2 )