By Topic

Performance evaluation of HTS synchronous motor using finite element method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Seung-Kyu Baik ; Appl. Supercond. Res. Group, Korea Electrotechnol. Res. Inst., Changwon-si, South Korea ; Myung-Hwan Sohn ; Young-kil Kwon ; Itsuya Muta
more authors

A 100 HP rated synchronous motor with superconducting rotating field winding has been designed based on the formulated equations established from 2 dimensional magnetic field distributions in a cylindrical coordinate. The cross-section was drawn based on calculated design results via Fortran program and then modeled with FEM (finite element method) to investigate the machine performances. First of all, the magnetic field distributions are analyzed in many ways according to the field directions and the armature currents. Especially after the rotating field winding is arranged with BSCCO-2223 high-temperature superconducting (HTS) pancake coils, the exerted magnetic field normally on the HTS tape is calculated through FEM. And the machine output power is calculated according to the torque angles that lie between the field and the armature main flux lines. Moreover, this paper includes the eddy-current loss variations of a copper damper located between the field and the armature coils. Finally, 3 dimensional magnetic field distribution is also calculated via FEM. The radial components of magnetic field are compared along the center line of an armature conductor section between 2 dimensional and 3 dimensional results. By the comparison we make sure that about 30% of machine output is added from the end effect of HTS field coil and more accurate design approach is possible.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:14 ,  Issue: 2 )