By Topic

Fast single layer cylindrical and helicoidal coil with voids between turns electromagnetic field calculation to be used in superconducting current limiter simulator for design purpose

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Baldan, C.A. ; Chem. Eng. Fac. of Lorena, FAENQUIL, Brazil ; Freitas, R.C. ; Homrich, R.P. ; Pinatti, D.G.
more authors

This paper presents a mathematical method to quickly calculate the flux density vector B produced by the current circulating in a resistive single-phase superconducting electrical current limiter (RSCL), at any point of its whole space, using the Biot-Savart's Law. As the calculation using the exact form of the turns of each coil (single layer cylindrical coil with helicoidal form presenting voids (free space) between neighbor turns) is computationally very cumbersome to be used in a RSCL dynamic simulator, it is proposed in this paper to substitute the real coil, only for the subject of the calculation, by an imaginary coil formed by plane closed circular turns with the same number of turns, the same height and radius as the real coil. Each turn of the imaginary coil is placed exactly in the medium position between successive turns of the actual coil and will carry the same current. The coil self-inductance is also calculated to verify the accuracy of the proposed method.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:14 ,  Issue: 2 )