Cart (Loading....) | Create Account
Close category search window

Thermal, electrical and mechanical response in Nb3Sn superconducting coils

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ferracin, P. ; Lawrence Berkeley Nat. Lab., CA, USA ; Caspi, S. ; Chiesa, L. ; Gourlay, S.A.
more authors

During a quench, significant temperatures can arise as a magnet's stored energy is dissipated in the normal zone. Temperature gradients during this process give rise to localized strains within the coil. Reactive forces in the magnet structure balance the electromagnetic and thermal forces and maintain on equilibrium. In this paper we present a complete 3D finite element analysis of a racetrack coil. Specifically, the analysis focuses on thermal, electrical and mechanical conditions in a 10 T Nb3Sn coil built and tested as part of LBNL's Subscale Magnet Program. The study attempts to simulate time history of the temperature and voltage rise during quench propagation. The transient thermal stress after the quench is then evaluated and discussed.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:14 ,  Issue: 2 )

Date of Publication:

June 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.