By Topic

Test results for HD1, a 16 tesla Nb3Sn dipole magnet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

20 Author(s)
Lietzke, A.F. ; Lawrence Berkeley Nat. Lab., CA, USA ; Bartlett, S. ; Bish, P. ; Caspi, S.
more authors

The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing the technology for using brittle superconductor in high-field accelerator magnets. HD1, the latest in a series of magnets, contains two, double-layer Nb3Sn flat racetrack coils. This single-bore dipole configuration, using the highest performance conductor available, was designed and assembled for a 16 tesla conductor/structure/pre-stress proof-of-principle. With the combination of brittle conductor and high Lorentz stress, considerable care was taken to predict the magnet's mechanical responses to pre-stress, cool-down, and excitation. Subsequent cold testing satisfied expectations: Training started at 13.6 T, 83% of "short-sample", achieved 90% in 10 quenches, and reached its peak bore field (16 T) after 19 quenches. The average plateau,∼92% of "short-sample", appeared to be limited by "stick-slip" conductor motions, consistent with the 16.2 T conductor "lift-off" pre-stress that was chosen for this first test. Some lessons learned and some implications for future conductor and magnet technology development are presented and discussed.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:14 ,  Issue: 2 )