By Topic

Subsampling matrices for wavelet decompositions on body centered cubic lattices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Entezari, A. ; Simon Fraser Univ., Burnaby, BC, Canada ; Moller, T. ; Vaisey, J.

This work derives a family of dilation matrices for the body-centered cubic (BCC) lattice, which is optimal in the sense of spectral sphere packing. While satisfying the necessary conditions for dilation, these matrices are all cube roots of an integer scalar matrix. This property offers theoretical advantages for construction of wavelet functions in addition to the practical advantages when iterating through a perfect reconstruction filter bank based on BCC downsampling. Lastly, we factor the BCC matrix into two matrices that allow us to cascade two two-channel perfect reconstruction filter banks in order to construct a four-channel perfect reconstruction filter bank based on BCC downsampling.

Published in:

Signal Processing Letters, IEEE  (Volume:11 ,  Issue: 9 )