By Topic

Derivation of a second-order switching surface in the boundary control of buck converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leung, K.K.S. ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Chung, H.S.H.

A second-order switching surface in the boundary control of buck converters is derived in this letter. The formulated switching surface can make the overall converter exhibit better steady-state and transient behaviors than the one with a first-order switching surface. The switching surface is derived by estimating the state trajectory movement after a switching action, resulting in a high state trajectory velocity along the switching surface. This phenomenon accelerates the trajectory moving toward the target operating point. The proposed control scheme has been successfully applied to a 120-W buck converter. The large-signal performance and a comparison with the first-order switching surface have been studied.

Published in:

Power Electronics Letters, IEEE  (Volume:2 ,  Issue: 2 )