By Topic

Predicting source code changes by mining change history

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. T. T. Ying ; IBM Thomas J. Watson Res. Center, Hawthorne, NY, USA ; G. C. Murphy ; R. Ng ; M. C. Chu-Carroll

Software developers are often faced with modification tasks that involve source which is spread across a code base. Some dependencies between source code, such as those between source code written in different languages, are difficult to determine using existing static and dynamic analyses. To augment existing analyses and to help developers identify relevant source code during a modification task, we have developed an approach that applies data mining techniques to determine change patterns - sets of files that were changed together frequently in the past - from the change history of the code base. Our hypothesis is that the change patterns can be used to recommend potentially relevant source code to a developer performing a modification task. We show that this approach can reveal valuable dependencies by applying the approach to the Eclipse and Mozilla open source projects and by evaluating the predictability and interestingness of the recommendations produced for actual modification tasks on these systems.

Published in:

IEEE Transactions on Software Engineering  (Volume:30 ,  Issue: 9 )