Cart (Loading....) | Create Account
Close category search window
 

Sequencing-by-hybridization revisited: the analog-spectrum proposal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Preparata, Franco P. ; Dept. of Comput. Sci., Brown Univ., Providence, RI, USA

All published approaches to DNA sequencing by hybridization (SBH) consist of the biochemical acquisition of the spectrum of a target sequence (the set of its subsequences conforming to a given probing pattern) followed by the algorithmic reconstruction of the sequence from its spectrum. In the "standard" or "uniform" approach, the probing pattern is a string of length L and the length of reliably reconstructible sequences is known to be mlen = O(2L). For a fixed microarray area, higher sequencing performance can be achieved by inserting nonprobing gaps ("wild-cards") in the probing pattern. The reconstruction, however, must cope with the emergence of fooling probes due to the gaps and algorithmic failure occurs when the spectrum becomes too densely populated, although we can achieve mcomp = O(4L). Despite the combinatorial success of gapped probing, all current approaches are based on a biochemically unrealistic spectrum-acquisition model (digital-spectrum). The reality of hybridization is much more complex. Departing from the conventional model, in this paper, we propose an alternative, called the analog-spectrum model, which more closely reflects the biochemical process. This novel modeling reestablishes probe length as the performance-governing factor, adopting "semidegenerate bases" as suitable emulators of currently inadequate universal bases. One important conclusion is that accurate biochemical measurements are pivotal to the success of SBH. The theoretical proposal presented in this paper should be a convincing stimulus for the needed biotechnological work.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:1 ,  Issue: 1 )

Date of Publication:

Jan.-March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.