Cart (Loading....) | Create Account
Close category search window
 

An incremental learning algorithm with confidence estimation for automated identification of NDE signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Polikar, R. ; Dept. of Electr. & Comput. Eng., Rowan Univ., Glassboro, NJ, USA ; Udpa, L. ; Udpa, S. ; Honavar, V.

An incremental learning algorithm is introduced for learning new information from additional data that may later become available, after a classifier has already been trained using a previously available database. The proposed algorithm is capable of incrementally learning new information without forgetting previously acquired knowledge and without requiring access to the original database, even when new data include examples of previously unseen classes. Scenarios requiring such a learning algorithm are encountered often in nondestructive evaluation (NDE) in which large volumes of data are collected in batches over a period of time, and new defect types may become available in subsequent databases. The algorithm, named Learn++, takes advantage of synergistic generalization performance of an ensemble of classifiers in which each classifier is trained with a strategically chosen subset of the training databases that subsequently become available. The ensemble of classifiers then is combined through a weighted majority voting procedure. Learn++ is independent of the specific classifier(s) comprising the ensemble, and hence may be used with any supervised learning algorithm. The voting procedure also allows Learn++ to estimate the confidence in its own decision. We present the algorithm and its promising results on two separate ultrasonic weld inspection applications.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:51 ,  Issue: 8 )

Date of Publication:

Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.