By Topic

Stable fitting of 2D curves and 3D surfaces by implicit polynomials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Helzer, A. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Barzohar, M. ; Malah, D.

This work deals with fitting 2D and 3D implicit polynomials (IPs) to 2D curves and 3D surfaces, respectively. The zero-set of the polynomial is determined by the IP coefficients and describes the data. The polynomial fitting algorithms proposed in this paper aim at reducing the sensitivity of the polynomial to coefficient errors. Errors in coefficient values may be the result of numerical calculations, when solving the fitting problem or due to coefficient quantization. It is demonstrated that the effect of reducing this sensitivity also improves the fitting tightness and stability of the proposed two algorithms in fitting noisy data, as compared to existing algorithms like the well-known 3L and gradient-one algorithms. The development of the proposed algorithms is based on an analysis of the sensitivity of the zero-set to small coefficient changes and on minimizing a bound on the maximal error for one algorithm and minimizing the error variance for the second. Simulation results show that the proposed algorithms provide a significant reduction in fitting errors, particularly when fitting noisy data of complex shapes with high order polynomials, as compared to the performance obtained by the above mentioned existing algorithms.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 10 )