By Topic

Modeling the space of camera response functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. D. Grossberg ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; S. K. Nayar

Many vision applications require precise measurement of scene radiance. The function relating scene radiance to image intensity of an imaging system is called the camera response. We analyze the properties that all camera responses share. This allows us to find the constraints that any response function must satisfy. These constraints determine the theoretical space of all possible camera responses. We have collected a diverse database of real-world camera response functions (DoRF). Using this database, we show that real-world responses occupy a small part of the theoretical space of all possible responses. We combine the constraints from our theoretical space with the data from DoRF to create a low-parameter empirical model of response (EMoR). This response model allows us to accurately interpolate the complete response function of a camera from a small number of measurements obtained using a standard chart. We also show that the model can be used to accurately estimate the camera response from images of an arbitrary scene taken using different exposures. The DoRF database and the EMoR model can be downloaded at

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:26 ,  Issue: 10 )