By Topic

Privacy-preserving data mining on data grids in the presence of malicious participants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gilburd, B. ; Dept. of Comput. Sci., Technion-Israel Inst. of Technol., Haifa, Israel ; Schuster, A. ; Wolff, R.

Data privacy is a major threat to the widespread deployment of data grids in domains such as health care and finance. We propose a novel technique for obtaining knowledge - by way of a data mining model - from a data grid, while ensuring that the privacy is cryptographically secure. To the best of our knowledge, all previous approaches for solving this problem fail in the presence of malicious participants. In this paper we present an algorithm which, in addition to being secure against malicious members, is asynchronous, involves no global communication patterns, and dynamically adjusts to new data or newly added resources. As far as we know, this is the first privacy-presenting data mining algorithm to possess these features in the presence of malicious participants. Simulations of thousands of resources prove that our algorithm quickly converges to the correct result. The simulations also prove that the effect of the privacy parameter on the convergence time is logarithmic.

Published in:

High performance Distributed Computing, 2004. Proceedings. 13th IEEE International Symposium on

Date of Conference:

4-6 June 2004