By Topic

Recursive nonlinear system identification by a stochastic gradient algorithm: stability, performance, and model nonlinearity considerations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Levanony, D. ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ., Beer Sheva, Israel ; Berman, N.

A parameter estimation problem in a class of nonlinear systems is considered where the input-output relation of a nonlinear system is approximated by a polynomial model (e.g., a Volterra series). A least mean squares (LMS) type algorithm is utilized for the recursive estimation of the polynomial coefficients, and its resulting mean square error (MSE) convergence properties are investigated. Conditions for the algorithm stability (in the mean square sense) are established, steady-state MSE bounds are obtained, and the convergence rate is discussed. In addition, modeling accuracy versus steady-state performance is examined; it is found that an increase of the modeling accuracy may result in a deterioration of the asymptotic performance, that is, yielding a larger steady-state MSE. Linear system identification is studied as a special case.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 9 )