By Topic

Signal and image segmentation using pairwise Markov chains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Derrode, S. ; GSM Group, Domaine Univ. de St. Jerome, Marseille, France ; Pieczynski, W.

The aim of this paper is to apply the recent pairwise Markov chain model, which generalizes the hidden Markov chain one, to the unsupervised restoration of hidden data. The main novelty is an original parameter estimation method that is valid in a general setting, where the form of the possibly correlated noise is not known. Several experimental results are presented in both Gaussian and generalized mixture contexts. They show the advantages of the pairwise Markov chain model with respect to the classical hidden Markov chain one for supervised and unsupervised restorations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 9 )