By Topic

Doubly constrained robust Capon beamformer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jian Li ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Stoica, Petre ; Zhisong Wang

The standard Capon beamformer (SCB) is known to have better resolution and much better interference rejection capability than the standard data-independent beamformer when the array steering vector is accurately known. However, the major problem of the SCB is that it lacks robustness in the presence of array steering vector errors. In this paper, we will first provide a complete analysis of a norm constrained Capon beamforming (NCCB) approach, which uses a norm constraint on the weight vector to improve the robustness against array steering vector errors and noise. Our analysis of NCCB is thorough and sheds more light on the choice of the norm constraint than what was commonly known. We also provide a natural extension of the SCB, which has been obtained via covariance matrix fitting, to the case of uncertain steering vectors by enforcing a double constraint on the array steering vector, viz. a constant norm constraint and a spherical uncertainty set constraint, which we refer to as the doubly constrained robust Capon beamformer (DCRCB). NCCB and DCRCB can both be efficiently computed at a comparable cost with that of the SCB. Performance comparisons of NCCB, DCRCB, and several other adaptive beamformers via a number of numerical examples are also presented.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 9 )