By Topic

Pseudospectral methods for optimal motion planning of differentially flat systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ross, I.M. ; Dept. of Mech. & Astronaut. Eng., Naval Postgraduate Sch., Monterey, CA, USA ; Fahroo, F.

The article presents some preliminary results on combining two new ideas from nonlinear control theory and dynamic optimization. We show that the computational framework facilitated by pseudospectral methods applies quite naturally and easily to Fliess' implicit state variable representation of dynamical systems. The optimal motion planning problem for differentially flat systems is equivalent to a classic Bolza problem of the calculus of variations. We exploit the notion that derivatives of flat outputs given in terms of Lagrange polynomials at Legendre-Gauss-Lobatto points can be quickly computed using pseudospectral differentiation matrices. Additionally, the Legendre pseudospectral method approximates integrals by Gauss-type quadrature rules. The application of this method to the two-dimensional crane model reveals how differential flatness may be readily exploited.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 8 )