Cart (Loading....) | Create Account
Close category search window
 

Emissivity simulations in passive microwave remote sensing with 3-D numerical solutions of Maxwell equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lin Zhou ; Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA ; Leung Tsang ; Jandhyala, V. ; Qin Li
more authors

In the numerical Maxwell-equation model (NMM3D) of rough-surface scattering, we solve Maxwell equations in three dimensions to calculate emissivities for applications in passive microwave remote sensing of soil and ocean surfaces. The difficult cases for soil surfaces are with exponential correlation functions when the surfaces have fine-scale structures of large slopes. The difficulty for ocean surfaces is that because the emissivities are close to that of a flat surface, the emissivities have to be calculated accurately to correctly assess the rough-surface effects. In this paper, the accuracies of emissivity calculations are improved by using Rao-Wilton-Glisson basis functions. We further use sparse matrix canonical method to solve the matrix equation of Poggio-Miller-Chang-Harrington-Wu integral equations. Energy conservation checks are provided for the simulations. Comparisons are made with results from the pulse basis function. Numerical results are illustrated for soil and ocean surfaces respectively with exponential correlation function and ocean spectrum. The emissivities of soil are illustrated at both L- and C-bands and at multiple incidence angles for the same physical roughness parameters. The brightness temperatures for ocean surfaces are illustrated for cases with various wind speeds. We compare results with those from the sparse matrix methods. Comparisons are also made with experimental emissivity measurements of soil surfaces. Parallel computation is also implemented. Lookup tables of emissivities based on NMM3D are provided.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 8 )

Date of Publication:

Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.