By Topic

Variable-branch tree-structured vector quantization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shiueng-Bien Yang ; Dept. of Comput. Sci. & Inf. Eng., Leader Univ., Tainan City, Taiwan

Tree-structured vector quantizers (TSVQ) and their variants have recently been proposed. All trees used are fixed M-ary tree structured, such that the training samples in each node must be artificially divided into a fixed number of clusters. This paper proposes a variable-branch tree-structured vector quantizer (VBTSVQ) based on a genetic algorithm, which searches for the number of child nodes of each splitting node for optimal coding in VBTSVQ. Moreover, one disadvantage of TSVQ is that the searched codeword usually differs from the full searched codeword. Briefly, the searched codeword in TSVQ sometimes is not the closest codeword to the input vector. This paper proposes the multiclassification encoding method to select many classified components to represent each cluster, and the codeword encoded in the VBTSVQ is usually the same as that of the full search. VBTSVQ outperforms other TSVQs in the experiments presented here.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 9 )