By Topic

Image restoration subject to a total variation constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. L. Combettes ; Lab. Jacques-Louis Lions, Univ. Pierre et Marie Curie Paris, France ; J. -C. Pesquet

Total variation has proven to be a valuable concept in connection with the recovery of images featuring piecewise smooth components. So far, however, it has been used exclusively as an objective to be minimized under constraints. In this paper, we propose an alternative formulation in which total variation is used as a constraint in a general convex programming framework. This approach places no limitation on the incorporation of additional constraints in the restoration process and the resulting optimization problem can be solved efficiently via block-iterative methods. Image denoising and deconvolution applications are demonstrated.

Published in:

IEEE Transactions on Image Processing  (Volume:13 ,  Issue: 9 )