By Topic

A robust and precise method for solving the permutation problem of frequency-domain blind source separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. Sawada ; NTT Commun. Sci. Labs., NTT Corp., Kyoto, Japan ; R. Mukai ; S. Araki ; S. Makino

Blind source separation (BSS) for convolutive mixtures can be solved efficiently in the frequency domain, where independent component analysis (ICA) is performed separately in each frequency bin. However, frequency-domain BSS involves a permutation problem: the permutation ambiguity of ICA in each frequency bin should be aligned so that a separated signal in the time-domain contains frequency components of the same source signal. This paper presents a robust and precise method for solving the permutation problem. It is based on two approaches: direction of arrival (DOA) estimation for sources and the interfrequency correlation of signal envelopes. We discuss the advantages and disadvantages of the two approaches, and integrate them to exploit their respective advantages. Furthermore, by utilizing the harmonics of signals, we make the new method robust even for low frequencies where DOA estimation is inaccurate. We also present a new closed-form formula for estimating DOAs from a separation matrix obtained by ICA. Experimental results show that our method provided an almost perfect solution to the permutation problem for a case where two sources were mixed in a room whose reverberation time was 300 ms.

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:12 ,  Issue: 5 )