By Topic

Crosstalk resilient interference cancellation in microphone arrays using Capon beamforming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wing-Kin Ma ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Vic., Australia ; Pak-Chung Ching ; Ba-Ngu Vo

This paper studies a reference-assisted approach for interference canceling (IC) in microphone array systems. Conventionally, reference-assisted IC is based on the zero crosstalk assumption; i.e., when the desired source signal is absent in the reference microphones. In applications where crosstalk is inevitable, the conventional IC approach usually exhibits degraded performance due to cancellation of the desired signal. In this paper, we develop a crosstalk resilient IC method based on the Capon beamforming technique. The proposed beamformer deals with the uncertainty of crosstalk by applying a constraint on the worst-case crosstalk magnitude. The proposed beamformer not only performs IC, it also provides blind beamforming of the desired signal. We show that a blind beamformer based on the traditional minimum-mean-square-error (MMSE) IC method is a special case of the proposed beamformer. One key step of implementing the proposed Capon beamformer lies in solving a difficult nonconvex optimization problem, and we illustrate how the Capon optimal solution can be effectively approximated using the so-called semidefinite relaxation algorithm. Simulation results demonstrate that the proposed beamformer is more robust against crosstalk-induced signal cancellation than beamformers based on the MMSE-IC methods.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:12 ,  Issue: 5 )