Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Miniature reconfigurable three-dimensional fractal tree antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Petko, J.S. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Werner, D.H.

This paper introduces a design methodology for miniature multiband as well as reconfigurable (i.e., tunable) antennas that exploits the self-similar branching structure of three-dimensional (3-D) fractal trees. Several fundamental relationships, useful for design purposes, are established between the geometrical structure of the fractal tree antenna and its corresponding radiation characteristics. In particular, it will be shown that the density and elevation angle of the branches play a key role in the effective design of miniature 3-D fractal tree antennas. Several design examples are considered where fractal trees are used as end-loads in order to miniaturize conventional dipole or monopole antennas. Multiband and reconfigurable versions of these miniature antennas are also proposed, where either reactive LC traps or RF switches are strategically placed throughout the branches and/or along the trunk of the trees. Included among these designs is a miniature reconfigurable dipole antenna that achieves a 57% size reduction for the center frequency of the lowest intended band of operation and has a tunable bandwidth of nearly 70%.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:52 ,  Issue: 8 )