By Topic

Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
S. V. Samsonov ; Inst. of Appl. Phys., Russian Acad. of Sci., Nizhny Novgorod, Russia ; G. G. Denisov ; V. L. Bratman ; A. A. Bogdashov
more authors

Operation of a continuous wave gyrotron backward-wave oscillator (gyro-BWO) with a helically rippled operating waveguide has been experimentally studied. The gyro-BWO exploits a dc oil-cooled magnet with magnetic field up to 0.5 T and utilizes a weakly relativistic (20 keV) electron beam produced by a magnetron injection gun. Stable generation at the second cyclotron harmonic with a maximum power of 7 kW and an efficiency of 15% at a frequency of 24.7 GHz was achieved. Smooth oscillation frequency tuning by varying the magnetic field was measured to be as wide as 5% at the half-power level. The first gyro-BWO operation with a single-stage energy recovery system was realized. The use of a depressed collector provided an efficiency increase up to 23% and an opportunity for reduction of the main power supply voltage down to 10 kV.

Published in:

IEEE Transactions on Plasma Science  (Volume:32 ,  Issue: 3 )