Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seung Jun Baek ; Dept. of Electr. & Comput. Eng., Univ. of Texas, Austin, TX, USA ; de Veciana, G. ; Su, X.

In this paper, we study how to reduce energy consumption in large-scale sensor networks, which systematically sample a spatio-temporal field. We begin by formulating a distributed compression problem subject to aggregation (energy) costs to a single sink. We show that the optimal solution is greedy and based on ordering sensors according to their aggregation costs-typically related to proximity-and, perhaps surprisingly, it is independent of the distribution of data sources. Next, we consider a simplified hierarchical model for a sensor network including multiple sinks, compressors/aggregation nodes, and sensors. Using a reasonable metric for energy cost, we show that the optimal organization of devices is associated with a Johnson-Mehl tessellation induced by their locations. Drawing on techniques from stochastic geometry, we analyze the energy savings that optimal hierarchies provide relative to previously proposed organizations based on proximity, i.e., associated Voronoi tessellations. Our analysis and simulations show that an optimal organization of aggregation/compression can yield 8%-28% energy savings depending on the compression ratio.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:22 ,  Issue: 6 )