By Topic

Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shuguang Cui ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Goldsmith, A.J. ; Bahai, A.

We consider radio applications in sensor networks, where the nodes operate on batteries so that energy consumption must be minimized, while satisfying given throughput and delay requirements. In this context, we analyze the best modulation and transmission strategy to minimize the total energy consumption required to send a given number of bits. The total energy consumption includes both the transmission energy and the circuit energy consumption. We first consider multi-input-multi-output (MIMO) systems based on Alamouti diversity schemes, which have good spectral efficiency but also more circuitry that consumes energy. We then extend our energy-efficiency analysis of MIMO systems to individual single-antenna nodes that cooperate to form multiple-antenna transmitters or receivers. By transmitting and/or receiving information jointly, we show that tremendous energy saving is possible for transmission distances larger than a given threshold, even when we take into account the local energy cost necessary for joint information transmission and reception. We also show that over some distance ranges, cooperative MIMO transmission and reception can simultaneously achieve both energy savings and delay reduction.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:22 ,  Issue: 6 )