Cart (Loading....) | Create Account
Close category search window

Evaluation of amplitude-stabilized optical pulse trains from rational harmonically mode-locked fiber ring lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gupta, K.K. ; Kansai Adv. Res. Center, Commun. Res. Lab., Hyogo, Japan ; Onodera, N. ; Hyodo, M. ; Watanabe, M.
more authors

This paper investigates rational harmonically mode-locked fiber ring lasers generating amplitude-stabilized fourth-order optical pulse trains at 13.91 GHz using a modulation signal frequency of 3.477 GHz. Pulse amplitude stabilization in terms of both amplitude equality and low amplitude noise is realized by using the nonlinear characteristics of a Mach-Zehnder intensity modulator in conjunction with intracavity optical filtering. The generated optical pulse trains are investigated for their amplitude equalization, amplitude noise, supermode noise suppression, and pulse timing jitter. It is shown that the pulses remained close to transform-limited over an operating wavelength range of 1535-1565 nm.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 8 )

Date of Publication:

Aug. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.