Cart (Loading....) | Create Account
Close category search window
 

Long-term monitoring of polarization-mode dispersion of aerial optical cables with respect to line availability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nellen, Philipp M. ; Swiss Fed. Labs. for Mater. Testing & Res., Dubendorf, Switzerland ; Bronnimann, Rolf ; Held, M. ; Sennhauser, U.

Physical and technical limits become important when trying to increase data transfer rates to tens of gigabits and higher for already installed optical cables. Polarization-mode dispersion (PMD) is one of the crucial transmission constraints, especially for aerial cables exposed to environmental stresses. Optical fibers in the laboratory and three aerial optical fiber cable links across the Swiss alps were characterized with respect to PMD. Long-term measurement results are correlated to weather data along the cables, and predictions regarding line availability are made.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 8 )

Date of Publication:

Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.