By Topic

Robot controller design for achieving global asymptotic stability and local prescribed performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Ailon ; Dept. of Electr. & Comput. Eng., Ben Gurion Univ. of the Negev, Beer Sheva, Israel ; N. Berman ; S. Arogeti

This paper presents some useful results which follow from the particular structural properties of a rigid robot model while the system is subject to the action of an output feedback. Given a rigid robot model, the controller ensures, in addition to the global asymptotic stability property, an eigenvalues assignment of the resulting linearized model within the stable region of the complex plane. In this way, required global and local control objectives can be achieved. Furthermore, the design of the controller is accomplished by applying a sort of a decoupling procedure that decomposes the entire nonlinear closed-loop system to a set of reduced-order nonlinear systems. The dependence of the eigenvalues of the linearized model on the model uncertainties is investigated. Simulation results that demonstrate the potential of the approach are presented.

Published in:

IEEE Transactions on Robotics  (Volume:20 ,  Issue: 4 )