Cart (Loading....) | Create Account
Close category search window
 

A geometric method for determining intersection relations between a movable convex object and a set of planar polygons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kai Tang ; Dept. of Mech. Eng., Hong Kong Univ. of Sci. & Technol., China ; Yong-Jin Liu

In this paper, we investigate how to topologically and geometrically characterize the intersection relations between a movable convex polygon A and a set Ξ of possibly overlapping polygons fixed in the plane. More specifically, a subset Φ⊆Ξ is called an intersection relation if there exists a placement of A that intersects, and only intersects, Φ. The objective of this paper is to design an efficient algorithm that finds a finite and discrete representation of all of the intersection relations between A and Ξ. Past related research only focuses on the complexity of the free space of the configuration space between A and Ξ and how to move or place an object in this free space. However, there are many applications that require the knowledge of not only the free space, but also the intersection relations. Examples are presented to demonstrate the rich applications of the formulated problem on intersection relations.

Published in:

Robotics, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.