Cart (Loading....) | Create Account
Close category search window
 

Design, fabrication, and characterization of thermally actuated probe arrays for dip pen nanolithography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bullen, David ; Syst. Group, Univ. of Illinois, Urbana, IL, USA ; Wang, Xuefeng ; Zou, Jun ; Chung, Sung-Wook
more authors

In Dip Pen Nanolithography (DPN), arbitrary nanoscale chemical patterns can be created by the diffusion of chemicals from the tip of an atomic force microscope (AFM) probe to a surface. This paper describes the design, optimization, fabrication, and testing of an actuated multi-probe DPN array. The probe array consists of 10 thermal bimorph active probes made of silicon nitride and gold. The probes are 300 μm long and the tips are spaced 100 μm apart. An actuation current of 10 mA produces a tip deflection of 8 μm, which is enough to remove individual tips from the surface independent of the adjacent probes. An analytical probe model is presented and used to optimize the design against several possible failure modes. The array is demonstrated by using it to simultaneously write 10 unique octadecanethiol patterns on a gold surface. Pattern linewidth as small as 80 nm has been created at a maximum write speed of 20 μm/sec. By writing multiple, distinctly different patterns in parallel, this device provides a significant improvement in throughput and flexibility over conventional AFM probes in the DPN process.

Published in:

Microelectromechanical Systems, Journal of  (Volume:13 ,  Issue: 4 )

Date of Publication:

Aug. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.